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R A N D O M  P U L S A T I O N S  I N  A H O M O G E N E O U S  
C O A R S E L Y  D I S P E R S E D  G A S  S U S P E N S I O N  

Yu. A. Buevich and Sh. K. Kapbasov UDC 532.546.6 

Internal pulsations of both phases of a monodisperse suspension of large particles in a gas are considered 
under the assumption of statistical independence of particles and isotropy of their pulsations isotropy provided 
by particle collisions. Statistical characteristics of the pulsations are computed as functions of the mean 

concentration and physical parameters for macroscopicaUy uniform states of the gas suspension, disregarding 

the energy dissipation in particle collisions. 

Random pulsations of particles and the surrounding liquid in suspensions, fluidized beds, and other disperse 

systems play a fundamental role in diverse transfer processes occurring in them and in the formation of effective 

rheological properties of these systems that specify features of the macroscopic motion of their phases and close an 

appropriate system of conservation equations. Such equations appear essentially different for dispersions of fine and 
large particles. Below we consider only systems with relatively large identical spherical particles, when their 
momentum and energy exchange results practically just from direct collisions. The conditions, under which such a 

situation is realized in dilute dispersions of fine spheres, are considered in [1 ]; an increase in the particle size and 
dispersion concentration makes it easier to establish such an interparticle exchange mechanism. 

As is shown in [2 ], hydrodynamic modeling of the disperse system can be carried out in this case in much 

the same manner as in solving a similar problem for dense gases. The mass and mean momentum equations for 
continuous and disperse phases and a conservation (or transfer) equation for pulsation energy of the particles that 

is analogous to the heat conduction equation were derived in [2 ]. In this case it is possible to obtain explicit repre- 
sentations for stresses due to pulsations and for the pulsation energy flow, so that complete closure of the governing 
equations requires that only a scalar quantity be determined, namely, the doubled mean pulsation energy per 

translational degree of freedom of the particle, which is similar in meaning to the temperature in molecular systems 
with random thermal motion, in a macroscopically uniform state of the disperse system. 

The latter is feasible within the framework of an analysis of the pseudoturbulent motion of the particles and 

the surrounding liquid based on the correlation theory of steady random processes [3 ]. Here a serious difficulty 
arises that is related to allowing for the effect of particle collisions on the properties of the pseudoturbulence. This 
effect was neglected altogether in [2, 4 ] and the energy flow to the pulsations was estimated as if there were no 

collisions whatever. Below, this difficulty is surmounted. It appears that ignoring collisions results in highly 

overestimated quantities characterizing the rate of the particle pulsations. 
Below, we examine only suspensions of identical spherical particles in gases whose inertia and weight are 

negligible compared with similar quantities for the particles. The state of the disperse system is considered to be 
macroscopically uniform in the sense that its mean characteristics do not depend on the coordinates. (The exception 
is, of course, the mean liquid pressure, which depends linearly on the vertical coordinate). This state is also assumed 

to be steady. 
Forces Acting on the Particles. Assuming the particles to be fairly large, for the hydraulic force of the 

interphase interaction we use a quadratic law following from the model of a jet flow past the particles of a concentrated 

system [5 ]. For one particle 

f h =  d0a pn K(p)uu, K - 3 : ( 8  1--1--Pl,17p 2/3)~'  u = v - - w ,  (1) 
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here the resistance coefficient for large spheres is equal to about 0.5. For the buoyancy acting on one particle, we 

take, unlike [2 ], 

fb = - -  (p/n) dg, d = pd~, (2) 

where the gas density is disregarded in accordance with the assumptions made. 

Equations (1) and (2) refer to systems with a fixed arrangement of the particles. In real media with pulsating 

particles, all quantities characterizing a local instantaneous state represent the sums of their mean values and 

fluctuations relative to them. For simplicity, the angular brackets in notation for the mean concentrations, particle 

and liquid velocities, as well as liquid pressure in the interparticle spacings are henceforth omitted. 

Regarding the pulsations as relatively weak, from Eqs. (1) and (2) we obtain for the mean forces 

dK p'u' 
( f h )  = d0a ~rt Ktuu~-} - ( (u0u')u')  ]--[- - ~ p  [u ( ) + 

- -  } ' !  d2K (p'~)uu , u 0 =  , (3) 
+ ( p ' ( u 0 u ' ) ) u ] +  2 dp 2 u 

( fb ) = - -  (p/n) pdlg, 

and for their fluctuations 

f n =  dOa nP K [ u u ' q - ( u 0 u ' ) u l q - ~ p ' u u  , 

fb = - -  (p/n) p'dlg. 
(4) 

In Eqs. (3) and (4), K and its derivatives are calculated, of course, for the mean volume concentration. 

The Langevin equation for a particle executing a random pulsatory motion is written as 
�9 s 

m (~w'/0t) = fh d- fb + f~, (5) 

where fc is the random force acting on a particle in a collision with other particles. In Eq. (5) a coordinate system 

where the mean velocity w of the dispersed phase is zero issued and the relative smallness of w' is again assumed. 

The force fc, regarded as a function of time, is zero everywhere, except during random time intervals, over 

which the particle experiences collisions. (For ideally rigid particles, such intervals contract to zero and fc represents 

a sum of delta functions). Of interest, of course is not this random process, resembling a Poisson random process, 

but rather the expression for the force, averaged over time intervals greatly exceeding the mean time between 

collisions. This suggests averaging over the assembly of possible situations in the vicinity of an isolated sphere having 
t 

the random velocity w,  which differ as regards both the positions and the velocities of the surrounding particles. 

Below all fluctuating quantities are understood as assembly-mean in the sense indicated above. 

After averaging over that set, fc becomes a continuous function of time. This function can contain constituents 

proportional only to two vectors, specifically, to the velocity w and the vector u0 that defines the only distinguished 

direction, characteristic of the average state of the disperse medium. Also, fc obviously should depend linearly on 
r 

w. Thus, in the most general case it is possible to assume that 

f~ = - dl (p/n) law' q- B (uow') ua], (6) 

where A and B are certain coefficients that are so far unknown. The mean with respect to Eq. (6) goes identically to 

zero. This implies that the role of the collision force reduces solely to energy redistribution between the degree of 

freedom in the direction uo and the degrees of freedom in transverse directions that are not tantamount to the first 
t 

one. Furthermore, in the general case the mean <fc w >, characterizing dissipation of the kinetic energy of the particles 

in collisions, differs from zero. In the current study, such dissipation is disregarded for the sake of simplicity. Then 

A and B should be determined from the conditions of statistical isotropy of the particle pulsations and of zero mean 
work of the collision force on random migrations of the particles. 
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In accordance with the discussion in [2 ], we totally neglect the excitation of rotational degrees of freedom 

of the particles due to their interaction with the gas and to collisions. 

Equation for Pulsatory and Average Motion. Multiplying Eq. (5) by the numerical concentration of the 
particles yields an equation playing the role of the momentum equation for the pulsatory motion of the disperse phase 

dap (Ow'/Ot) = n  (fh -f- I~) +nfr  (7) 

This equation should be completed with the equations resulting from the laws of mass and momentum conservation 
for the gas phase. The latter were treated in [2 ], and they can be written as 

(p/at + uv) p' = ~V v', 0 = - -  VP' - -n  ((h + fb), ~ = I - -  p. (8) 

Here a coordinate system with w -- 0 and the relative smallness of pulsations were also used. 

It is convenient to employ, as in [2, 4 ], the mathematical apparatus of the correlation theory of steady random 
processes [3 ], according to which any random quantity with zero mean is represented as a stochastic Fourier-Stieltjes 
integral with a random measure, the mean of the square of whose modulus defines the spectral density, for example: 

p' (t, Ix) = ~ e i~t+'k* dZp, xFp.p (~i k) ----- lira ( d Z p d Z p . )  
,,t,o-,.0., d.k-0 d~odk 

Then, the correlation functions can be found by integration with respect to frequency and over the wave space, in 

particular: 

( p' (t, x)p'  (t q- x, x + r) ) = i dc~ VP'P(to' k).. 

Substituting the expressions for all random fluctuations in terms of Fourier-Stieltjes integrals into Eqs. (7) 
and (8), we arrive at a system of linear algebraic equations for random measures that allow all of them to be expressed 

in terms of dZp. After simple manipulations we have 

(co q- uk)dZp --- ekdZ v, 

(ito + A) dZ w + B (uodZ~) uo = - -  ikdZ~,  

0 ----- - -  i k d Z ,  - -  F [udZu + (u0dZu) u ] -  [(dF/dp) uu - -  

g] dZp, F = K/• ~ _ dl/d o, dZn --- dgp/pdt.  

(9) 

Here expressions (3), (4), and (6) for random forces are used. 
By solving these equations it is easy to subsequently obtain the expressions for all spectral densities as 

quantities proportional to Wp, p(W, k), and thereafter to compute the correlation functions needed. Closing these 

expressions requires wing the spectral density for concentration fluctuations that was found in [6 ]. Below, the 

following formulas will be needed: 

S p,p (to, k) = �9 (k), So (k)k d  = 
( p'2 > (10) 

4~ 

For the dispersion of the random concentration field we will utilize an expression following from the Perkus-Yevik 

theory of dense gases and liquids that was also obtained in [6 ]: 

<:P'2 > = P~ [ 1 + 2p 4---'--p(I - -  p)'. ] - ' "  (11) 

The mean parameters, characterizing a macroscopically uniform state of the disperse medium considered, 

are related by the equations 

- - v p - - n ( ( f h > q - < f b > ) = 0 ,  n ( < f h >  + ( f b > ) + p M , g = 0 ,  (12) 
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representing a special case of the equations in [2]. The first of relations (12) defines the constant mean pressure 

gradient of the gas in the homogeneous disperse medium in the gravitational field, and the second connects the mean 

sliding velocity u with the mean volume concentration of the medium p. Setting 

from Eqs. (12) we obtain 

n, < |h ) =' (do/a) pXKuu, g = - -  gUo, (13) 

( __~ )ll2:= ( eg ~ ill (14) 
U = .  a t - - ~ - - )  ' 

where K, F, and ~ are determined, respectively, by Eqs. (1) and (9), and 2 is as yet unknown. If the effect exerted 
on the hydraulic resistance of the particle by quantities quadratic in the fluctuations is disregarded, then Eq. (3) for 
the mean hydraulic force and Eq. (1) for the force in the system with no fluctuations coincide, and 2= 1. 

We would like to emphasize that the use of Eqs. (10) and (11) corresponds to the most detailed description 
# 

of fluctuations that is compatible with a continuum approach to the problem [6 ]. In this case, w has the meaning of 
t p 

the velocity fluctuation of a single particle, and v and p ,  of the gas velocity and pressure disturbances in its specific 
volume. 

Solution of the Equation for Fluctuations and Its Closure. We take the first coordinate axis to run along u0, 

and the two others, in an arbitrary way, in the plane normal to the distinguished direction. Then, after cumbersome 

calculations we obtain from Eq. (9) 

dZ,, = dZ~ + dZ,., dZ~,~,3 = ~ i (t~,3/Fu) dZ,,, 

dZux = ~ i (kxi2Fu) dZz  ~ (M - -  l/e) udZ o, 

dZ~,~,a- ik~'s dZz,  dZ~l  = ~ ikl dZz, 
ico + A ico]+ A + B (15) 

d Z ,  = ik -~ (cole + g u k l )  [ico (2A + B) + A (A + B) - -  co~| X 

• {]co [2Fu + (2A + B) (2 - -  t~)l + 2Fu {A + B (1 - -  t')l + 

+ (2 - -  P) [A (A + B) - -  co2]}-12FudZp, 

where the designations (we use Eqs. (9), (13), and (14)) 

M =  1 + 1 ( d F  u' ) + ( d l n K  + 2+------~X), t = k l  (16) 
' e 2Fu 2 " d9 + g = " d -m- f  - -  s k " 

are introduced. 

The calculations can be simplified considerably, if it is noticed that the characteristic frequency, defining the 

evolution of concentration fluctuations, is of the order of magnitude of l~D~(aZ[p 2/3) D, where D is the coefficient of 

pseudoturbulent self-diffusion of the particles [6 ]. On the other hand, it is seen from Eqs. (15) that A and B should 
be of the order of magnitude of Fu, having the dimension of frequency. It is not difficult to show using the results 

from [6 ] and the above definition of Fu that the first quantity is generally much smaller than the second. This implies 

that the terms in 3 in Eq. (15) can approximately be ignored, as compared with the terms involving Fu, A, and B, 
i.e., the fluctuations can be considered in a quasi-steady approximation. Such an approximation corresponds to 

actually neglecting the change in the random concentration field over times of the order of the temporal scale of 
velocity fluctuations. 

Introducing the new unknown parameters 

x--~A/2Fu, y = B / 2 F u ,  (17) 

results in the following approximate relations for random measures replacing those in Eq. (15): 

dZu2,3 = 2xdZ,.~,,, dZul = (x + y) dZwx ~ (M - -  l/e) udZp, 
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dZw~,a = (x + y) t (k2,a/k) MudZp, 
L (b - -  t 2) 

xt 2 
dZ~x, = m u d Z  o, L = y + x (x + y), 

L (b ~ t 2) 

b = L-X[x + y + 2x (x + Y)I, 

here, M as a function of p is determined by 

parameters in Eq. (17). 

Based on Eq. (18), the condit ion 
<w'12> '2 = < w 2 > may be written as 

L ~ 

_ (x + y)~ 

2L ~ 

Hence the equation 

(18) 

Eq. (16). First of all, let us find representations for the unknown 

of stat ist ical  isotropy of pseudoturbulent  particle pulsat ions 

#dr ) 
( o - -  :)" (Mu), ( o" > = 

(o - : ) ,  a t  (Mu)~ ( 0 '~ > .  

t, (x + y), ~ : (1 - r )  
x2S ( b - - t 2 )  2 d t =  dr. 

o 2 o j ( b - -  t~) 2 

follows. The second equation for x and y follows from the requirement that the work of the collision force go to zero, 

which gives 

L w '  ) = - -  dl (p/n) (A ( w '~ ) + B ( wl 2 ) ) .., 3x + V = O. 

Using this to express y in terms of x, we arrive at a unique solution for x. The analysis indicates that a 

physically acceptable solution for this equation conforms to b = s 2 > 1 and is unique. In this case the equation itself 

reduces to the form 

s(s2- -1)  In s+__.____~l = 3s2--2  + s 2  i. 
2 s - -  1 9 s  2 P 2 

A numerical solution of this equation determines s, after which x and y may easily be found. We obtain 

s = 1,598, x = - -  5,122, y -  15,366. (19) 

This immediately defines the mean square of any component of the particle velocity fluctuation and the effective 

"temperature" of the pseudoturbulent motion in the form 

< wj 2 > = C~.~M ~ < p'~ > u 2 = W(p) (u~ 
(20) 

0e = m ( wt'2 > = W (p) m (u~ Cw.w = 1,17.10-*, 

where the function W(p) and the velocity u ~ of the descent of a single particle in an unbounded gas are introduced: 

( 8 ~  .'~,12 
W (p) = Cw w (1 - -  i,17p~/3) ' M~ (p) ( p,, > u ~ = (ag)t/2, (21) 

, (1 - -  0)  ~ ' k - ~ ' :  

and M and <p,2> are determined by Eqs. (16) and (11), respectively. 
Figure la plots the dimensionless temperature 0e/re(u~ versus p. It follows from a comparison with the 

results of [2, 4 ] that the latter results appear to be highly (by more than an order of magnitude) overestimated. There 

are two reasons for this. First, the allowance for the collision force noticeably changes the phase relationships between 
w' and fluctuations of other variables in comparison with a collisionless model, which leads to an overestimated result 

for the flow of energy to the pulsatory motion. Second, the dispersion of the concentration fluctuations (11) is much 

less than the dispersion used in [2, 4 ] following from a fairly coarse grid model [7 ]. Furthermore, a temperature 
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Fig. 1. Dimensionless equilibrium temperature (a) 
of a pseudogas of particles (b) at 2 -- 1. 
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and dimensionless pressure 

maximum is attained at a value of p only slightly larger than 0.20, which is markedly smaller than the value that 

would be expected from previous calculations. 

Of fundamental importance for the mechanics of coarsely dispersed gas suspensions is the pressure of the 

pseudogas of suspended panicles (or the compressibility modulus of the disperse phase). Based on [2, 6 ], this 

pressure in macroscopically uniform states may be expressed as 

Pe m n ( w  i )G(p)  pG(p) 117(p)dl(u~ 2, G =  l + 9 + p  2 - p  3 = "' = (22) 
(1 - -  p p  

Figure 1 b plots the dimensionless pressure as a function of p. It is of great significance that the dimensionless 

pressure rises monotonically with increasing mean concentration, which is the condition for thermodynamic stability 

of the uniform state of the disperse medium [2 ]. In principle, in calculations use might also be made of other 

expressions f o r  <p'2> and G, following from other approximate theories of statistical physics, instead of those 

presented in Eqs. (11) and (22). For example, in this connection Enskog's theory of dense gases was considered in 

[6 ]. However, as was pointed out in [6 ], the latter theory erroneously undervalues the dispersion of concentration 

fluctuations in concentrated suspensions. Therefore, it is not surprising that the relevant concentration dependence 
of the effective pressure has a maximum, which is, of course, an artefact. Hence it follows that classical results of the 

statistical physics of molecular systems should be extended to disperse media with certain caution. 

Statistical Characteristics of Pseudoturbulence. Other mean values, characterizing pseudoturbulent motion, 

can be computed quite analogously. Here we present the expressions for the mean values of quadratic in 

thefluctuations. Calculations give 

( p'w; > = Co. , ,M < p,2 ) u, ( .p 'wj  > = 0,. j 4= l ;  

(p ' v~)  = C o , v M ( p " ) u  ( M - - 1 / e ) ( p ' = ) u ,  (p 'v  l )  = 0 ,  ]=/=1; 

"' re (1)M" Yr (M I/e) + ( M "  i/@1 < p"  > u ~, 

. . . .  �9 - ' ( = ) A J 2  (23) 
<v2 > = <v3 > = t,v,~,,, <p'S > u2; 

�9 " rf, c') a,t2 E(~'~M(M ~ 11~)] (p '~> u ~, < v,r~, > = ,,.,,,.,~,., ~ 

�9 , �9 �9 r . , ( 2 )  ~,,f~ < v2r~ ) = < aw~ ') = .-.,,.,,,,., < p"  >u~; 
�9 # ,~ F 

<o I o k )  = ( v j w k )  = O, 

where the following numerical coefficients are introduced: 

Cp.~ = 2,40.10 -2, Co.v = 0,270, 

�9 r'(2> ~ 2 , ' 1 8 . 1 0  -2, �9 -,v.wC'tl) = 1 , 3 2  10 -~,  ,J~,.w 

�9 s i 

rq2) ,-vvc~') = 0,148, b~.~ = 0,202, 

~( I ) F ( - I  ) ~v.~ 0,540, 2,40" f0-L = ~ u p w  

(24) 
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Fig. 2. Relative volume phase flows, resulting from pulsations, at ~ = 1. 

It follows from Eqs. (23) and (24) that the gas pulsations remain anisotropic despite isotropy of the particle 

pulsations and that the fluctuating velocities of the liquid greatly exceed those for the particles. When needed, various 

double-point double-time correlation functions can also be computed using the expression for the total spectral 

density of concentration fluctuations from [6 ]. 
Effect of Pulsations on the Average State. Pulsations of both phases involve, primarily, a difference between 

averaged characteristics of the real disperse medium and those of the same medium with fixed particles under 

identical external conditions. (This is evident if only by comparing the mean force from Eq. (3) with the quantity in 

Eq. (1).) 
The mean volume flows of the phases can be written in the form 

Q0 = (' (8 -+- S')(U 1 -~- t)~) ) = EV 1 "-~ AQ0, AQ0 = - -  ( p'v~ ) ,  
(25) 

Q1 = < (p + p')(wl + w;) > = pwl +/~Q~, AQ1 = < p'w; ) .  
/ 

Figure 2 illustrates dimensionless additions to the flows, computable from Eqs. (23)-(25). These additions, 
resulting from pulsations, lead, in particular, to the fact that experiments on determining the rate of constrained 

deposition of particles based on measuring the volume or mass phase flows (for example, the rate of deposit buildup 

on the bottom of a vessel containing the disperse mixture) and on directly tracking the trajectories of individual 

particles produce different results. However, judging from the curves in Fig. 2, this difference proves to be rather 

slight for coarsely dispersed mixtures. Yet this is of fundamental importance. 
Now we consider a change in the effective hydraulic resistance of the system of suspended particles toward 

the relative gas flow, caused by the pseudoturbulent motion. To this end, we transform the first of Eqs. (3) using 

Eqs. (23) and (24) and compare the result with Eq. (13). This leads to an equation fo r l ,  which was introduced in 

Eq. (13): 

c~L ~ + ell  + co = 0, co -- 1 + (0,123h~ - -0 ,246hlha-  0,504h~ + 

+ 0,492ha/e + h4) ( P'~ ) ,  cl = --1 + (.0,123/h - -  0,246h~-- 0,254h3) ( p'" ) / e ,  
(26) 

c , = 0 , 1 5 8 ( p ' ~ ) / s  ~, hi---- I / e+ha ]2 ,  h ~ = l ] e + h 3 ,  

ha = d In K/dp, h4 = (i/2K)(dZK/dP~), 

where K and </9'2> are defined by Eqs. (1) and (11). 
Figure 3 gives the dependence on p for the solution of Eq. (26) that reduces to unity at p = 0. With low 

concentrations, )l < 1, which may be perceived as a certain decrease in the hydraulic resistance of the collection of 
pulsating particles as compared with a similar system of fixed particles. With high concentrations, the opposite is the 

case. 
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Fig. 3. Concentration dependences of the coefficients of hydraulic resistance 
vari~ition ;t and ~. 

Since ;t differs weakly from unity throughout the range of p, various mean characteristics of the 

pseudoturbulence can be computed at 2 -- 1, which is done in Figs. 1 and 2. In experiments,instead of the velocity u 

the relative volume phase flow or the effective velocity Ue, which is determined from the equation Qo-Q1 = eUe, is 

generally used, and the hydraulic resistance is represented in the form 

n ( ~h ) ~ (do/a) Keueu e. (27) 

In the coordinate system where the mean volume flow of the disperse phase goes to zero, we have wl -- 

AQ1/p and vl = u (see Eq. (25)), and the expression for AQ0 follows from Eqs. (23) and (24). Therefore, 

ue = u {I + e - x t ( M - -  1/e)--0,270M] ( 9,2 > }. (28) 

From a comparison of Eq. (13) with Eq. (27) with consideration of Eq. (28) 

Ke ---= ~K, ~ = k {1 + 8 -x [(M - -  I/e) - -  0,270M1 < p,2 } }-2. (29) 

follows. The dependence ~p(p) is also illustrated in Fig. 3. 

Thus, the panicle pulsations are responsible for a certain difference of the function K(p), which must be 

treated theoretically, from Ke(p) determined experimentally. A similar circumstance takes place also for finely 

dispersed suspensions [8 ] when the above-mentioned effect is far more noticeable. 

The differences between flows and the resistance in media containing relatively immobile and pulsating 

particles necessitate, generally speaking, a refinement of the hydrodynamic equations for disperse media that were 

written in [2 ] by analogy with dense gases when the presence of a continuous medium in the interparticle spacings 

is entirely inessential. Because these differences are insignificant, there is no need for such a refinement in the first 
approximation, which allows these equations to be left as they are [2 ]. 

N O T A T I O N  

a, particle radius; do, di, densities of the gas and the particle material; fb, fc, fn, buoyancy, collision, and 

hydraulic forces, respectively; g, acceleration due to gravity; k, wave number; L, parameter from Eq. (18) ; m, particle 

mass; n, numerical concentration of the particles; Pe, P, pressures of the particle pseudogas and the gas in spacings 

between them; Qo, QI, volume flows of the gas and the particles; s -- V~ for b > 0; u, relative velocity of the gas; u0 
-- u/u;  u ~ velocity of descent of a single particle in the unbounded gas; v, w, gas and particle velocities; dZ, random 

measure; e, porosity; ~, resistance coefficient of a particle; 0e, temperature of the particle pseudogas; tc -- dl /do;  2, ~, 
coefficients of variation of resistance ; p, volume concentration of the particles; qJ, (I), spectral densities; oJ, frequency; 
a prime denotes fluctuations, and angular brackets denote averaging. 
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